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Abstract. We discuss symmetry breaking in the weak magnetism form factors for the semileptonic octet
baryon decays. In the chiral quark model, the symmetry breaking can be accounted for in the masses and
the quark spin polarizations can take on more general values due to Goldstone boson depolarization. Here
we clarify some features of the chiral quark model prediction for the weak magnetism and compare to the
corresponding result of the chiral quark soliton model.

1 Introduction

The weak interaction of the baryon octet has been a source
of much information concerning the dynamics of the octet
baryons. Especially the weak interactions can probe de-
tails of the hadronic structure at low energies.

Already early, the conserved vector current (CVC) hy-
pothesis [1] extended to flavor SU(3) symmetry made pre-
dictions for the so called weak magnetism form factors.

In the quark model (QM), these predictions are easily
rederived in the same limit. Introducing explicit SU(3)
symmetry breaking through the masses of baryons and
quarks, the QM will be able to model part of the symmetry
breaking of the weak magnetism form factors [2,3].

In the chiral quark model (χQM) [4–6], it is also pos-
sible to include modifications of the spin polarizations of
the quarks in these form factors.

In this note we discuss these form factors and compare
to the same form factors derived in the so called chiral
quark soliton model (χQSM) [7]. The result of the latter
model seems to differ in some respects with the result of
the χQM [8]. We here show that when linear terms in the
symmetry breaking are eliminated the two models give the
same predictions.

2 The weak form factors

The transition matrix element MB→B′l−ν̄l
for the decay

B → B′ + l− + ν̄l (q → q′ + l− + ν̄l), is given by

MB→B′l−ν̄l
=

G√
2
Vqq′〈B′(p′)|Jµ

weak|B(p)〉Lµ, (1)

where G is the Fermi coupling constant, Vqq′ is the qq′-
element of the Cabibbo–Kobayashi–Maskawa mixing ma-
trix, and Lµ is the leptonic current.
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The hadronic weak current is

Jµ
weak = Jµ

V − Jµ
A, (2)

where Jµ
V is the vector current and Jµ

A is the axial-vector
current. The matrix element of the vector current in mo-
mentum space of the transition B → B′ + l− + ν̄l is given
by

〈B′(p′)| Jµ
V |B(p)〉 = ū′(p′)

(
f1(q2)γµ

− i
f2(q2)

MB + MB′
σµνqν +

f3(q2)
MB + MB′

qµ

)
u(p),

(3)

where MB (MB′), p (p′), u(p) (u′(p′)), and |B(p)〉
(|B′(p′)〉) are the mass, momentum, Dirac spinor, and ex-
ternal baryon state of the initial (final) baryon B (B′),
respectively, and q = p − p′ is the momentum transfer [9].
The functions fi(q2), where i = 1, 2, 3, are the vector cur-
rent form factors. These form factors are Lorentz scalars
and contain information about the hadron dynamics. f1 is
the vector form factor, f2 is the induced tensor form factor
(or weak magnetism form factor or anomalous magnetic
moment form factor), and f3 is the induced scalar form
factor.

In a previous paper [8], we have derived the form fac-
tors fi ≡ fi(0), where i = 1, 2, 3, in the χQM. Up to terms
linear in the parameters E ≡ ∆/Σ and ε ≡ δ/σ, where
Σ = MB + MB′ , ∆ = MB − MB′ , σ = mq + mq′ , and
δ = mq − mq′ , these form factors are

f1 = fQM
1 , (4)

f2 =
(

Σ

σ
GA − 1

)
fQM
1 , (5)

f3 =
Σ

σ
(EGA − ε) fQM

1 . (6)

Here GA ≡ gQM
1 /fQM

1 , with fQM
1 ≡ 〈B′|λqq′ ⊗ 1|B〉 and

gQM
1 ≡ 〈B′|λqq′ ⊗σz|B〉. The λqq′ is the SU(3) matrix that
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effectuates the flavor transition and the σz operator mea-
sures the spin polarizations of the quarks in the baryons.

2.1 The weak axial-vector form factors

The weak axial-vector form factors GA = gQM
1 /fQM

1 can
be obtained from the SU(6) QM expressed in terms of
the parameters F and D [10]. In the χQM, the GA’s are
expressed in the quark spin polarizations of the proton,
i.e. ∆u, ∆d, and ∆s. These spin polarizations differ con-
siderably from the ones in the SU(6) QM due to the de-
polarization of the quark spins by the Goldstone bosons
(GBs). The spin polarizations in the χQM are calculated
with one GB emission. They are [6]

∆u = 4
3 − 37

9 a, (7)

∆d = − 1
3 − 2

9a, (8)
∆s = −a, (9)

where a is the parameter which measures the probability
of emission of a GB from a quark. Using the relations
F = 1

2 (∆u − ∆s) and D = 1
2 (∆u − 2∆d + ∆s) [11], we

have

Gnp
A = ∆u − ∆d, (10)

GΣ−Σ0

A = 1
2 (∆u − ∆s), (11)

gQM
1

Σ±Λ
= 1√

6
(∆u − 2∆d + ∆s), (12)

GΞ−Ξ0

A = ∆d − ∆s (13)

for the ∆S = 0 decays and

GΣ−n
A = ∆d − ∆s, (14)

GΞ−Σ0

A = ∆u − ∆d, (15)

GΞ−Λ
A = 1

3 (∆u + ∆d − 2∆s), (16)

GΛp
A = 1

3 (2∆u − ∆d − ∆s), (17)

GΞ0Σ+

A = ∆u − ∆d (18)

for the ∆S = 1 decays.
The magnetic moments of the octet baryons and the

weak axial-vector form factor Gnp
A can be used to fit the

parameter a and the quark magnetic moment µd. Using
µu = −2µd and µs = 2µd/3 [12], we then obtain a ' 0.104
and µd ' −1.196 µN . This gives ∆u ' 0.90, ∆d ' −0.36,
and ∆s ' −0.10.

In the χQM, the effective quark masses can be deter-
mined from the fitted value of µd. The quark masses are
then meff

u = meff
d = meff ≈ 260 MeV and meff

s = 3meff/2 ≈
390 MeV. In the following, we will use mq ≡ meff

q , where
q = u, d, s.

The values of the GBB′
A ’s for the χQM are listed in Ta-

ble 1, where for reference also the axial-vector form factors
of the naive QM (NQM) are displayed.

Table 1. Weak axial-vector form factors, GBB′
A . The values

in the NQM column are the SU(6) values for the weak axial-
vector form factors and the values in the χQM column are

obtained from the quark spin polarizations. gQM
1

Σ±Λ
are given

instead of GΣ±Λ
A , since fQM

1
Σ±Λ

= 0. The experimental values

for GBB′
A have been obtained from [17], except for the gQM

1
Σ−Λ

and GΞ−Σ0

A values, which are CERN WA2 [18,19] results from
branching ratio measurements

Quantity Experimental NQM χQM
value

Gnp
A 1.2670 ± 0.0035 5

3 1.26
GΣ−Σ0

A - 2
3 0.50

gQM
1

Σ−Λ
0.589 ± 0.016

√
2
3 0.62

gQM
1

Σ+Λ
-

√
2
3 0.62

GΞ−Ξ0

A - − 1
3 −0.25

GΣ−n
A −0.340 ± 0.017 − 1

3 −0.25
GΞ−Σ0

A 1.25 ± 0.15 5
3 1.26

GΞ−Λ
A 0.25 ± 0.05 1

3 0.25
GΛp

A 0.718 ± 0.015 1 0.76
GΞ0Σ+

A - 5
3 1.26

3 The ratio ρf and the “weak magnetism”

We will now concentrate on the “weak magnetism” form
factor ρf , which is defined as

ρf ≡ f2

f1
. (19)

Inserting (4) and (5) in (19), we obtain

ρf =
Σ

σ
GA − 1. (20)

Since there are no linear terms in E and ε in either f1 or
f2, the formula for ρf is valid up to terms of second order
in E and ε. The quark masses in this and related formulas
appear as effective masses, and the parametric dependence
of the quark spin polarization ∆q, where q = u, d, s, on the
emission probability a of GBs incorporates effects of rel-
ativistic corrections and other possible dynamical effects
on both the magnetic moments [13] and the ρf ’s. When
these effects are taken into account directly, in terms of a
changed structure of the currents, the fits become worse
[14].

The expression (20) for ρf above is closely related to
the corresponding formula for the magnetic moments µB

of the octet baryons used in earlier studies. In the same
approximation as here, we have

f1 = QB , (21)

f2 = ΣµB − QB = Σ
∑

q=u,d,s

eq

2mq
∆q − QB

≡ MB

MN
κB , (22)
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where eq is the quark charge, QB = 0,±1 is the charge
of the baryon, and κB is the anomalous magnetic mo-
ment of the baryon in nuclear magnetons. It is therefore
in principle possible to convert expression (20) above to
an expression in terms of the magnetic moments. This will
eliminate the parametric model dependence. In the follow-
ing, we will discuss how this can be done in a way that
preserves the absence of terms linear in E and ε in (20).

3.1 The weak magnetism and CVC

From SU(3) flavor symmetry the weak magnetism form
factors can be related to the magnetic moments of the
nucleons. The result is [10]

ρnp
f = (µ(p) − µ(n))/µN − 1, (23)

ρΣ−Σ0

f =
(
µ(p) + 1

2µ(n)
)
/µN − 1, (24)

fΣ±Λ
2 = −

√
3
2µ(n)/µN , (25)

ρΞ−Ξ0

f = (µ(p) + 2µ(n))/µN − 1, (26)

ρΣ−n
f = (µ(p) + 2µ(n))/µN − 1, (27)

ρΞ−Σ0

f = (µ(p) − µ(n))/µN − 1, (28)

ρΞ−Λ
f = (µ(p) + µ(n))/µN − 1, (29)

ρΛp
f = µ(p)/µN − 1, (30)

ρΞ0Σ+

f = (µ(p) − µ(n))/µN − 1. (31)

This is called the (extended) CVC hypothesis. In the
NQM, using the formula (20) above, all these relations
emerge by putting Σ/σ = MN/m and using ∆u = 4/3,
∆d = −1/3, and ∆s = 0. Then all ρf ’s can be expressed
in terms of the quark magnetic moment µd = −µu/2 =
−1/(6m), which can be related to the proton and neutron
magnetic moments.

It is, however, obvious that the symmetry breaking
in the masses, neither of the quarks nor of the baryons
are then accounted for. In particular, µs = µd in this
approximation.

On the next level of refinement, one could therefore
try to use in (20) instead the real baryon masses together
with ms/m = 3/2, along with the SU(6) QM values for
the spin polarizations GA. Since the magnetic moments
are fairly well accounted for in the NQM, this is probably
a rather good improvement. In the χQM, we also allow
the spin polarizations to deviate from their SU(6) values,
increasing the improvement still somewhat. The results
are given in Table 2.

3.2 The weak magnetism in the chiral quark model.
The ∆S = 0 cases

The formula (20) above is transformed into an expres-
sion in terms of the magnetic moments of the baryons,
when GA/σ is expressed in the magnetic moments through
∆q/(2mq).

Table 2. The ratios ρBB′
f ≡ fBB′

2
fBB′
1

. The experimental values

have been obtained from [18] (see also [19]). fΣ±Λ
2 are given

instead of ρΣ±Λ
f , since fΣ±Λ

1 = 0

Quantity Experimental CVC χQM χQSM [7]
value

ρnp
f 3.71 ± 0.00 (input) 3.71 3.53 3.71

ρΣ−Σ0

f - 0.84 1.31 1.30
fΣ−Λ
2 3.52 ± 3.52 2.34 2.73 2.80

fΣ+Λ
2 - 2.34 2.72 2.80

ρΞ−Ξ0

f - −2.03 −2.27 -

ρΣ−n
f −1.78 ± 0.61 −2.03 −1.82 −1.67

ρΞ−Σ0

f - 3.71 3.85 3.61
ρΞ−Λ

f −0.44 ± 0.46 −0.12 −0.06 0.10
ρΛp

f 2.43 ± 1.49 1.79 1.38 1.52
ρΞ0Σ+

f - 3.71 3.83 -

Consider for example the n → p + l− + ν̄l decay. We
can then show, using µ(p) = ∆u µu + ∆d µd + ∆s µs and
the corresponding formula for µ(n), that

ρnp
f =

1
2

(
1 +

Mn

Mp

)
(µ(p) − µ(n))

1
µN

− 1

' (µ(p) − µ(n))
1

µN
− 1 = κp − κn. (32)

Here we have used the expression Gnp
A = ∆u − ∆d from

Subsection 2.1 above and µu = −2µd. Equation (32) is
exactly the CVC formula for the n → p + l− + ν̄l decay.

For the other transitions among the octet baryons,
the χQM predicts the symmetry breaking in these weak
magnetic moments due to the symmetry breaking in the
masses both of quarks and baryons. In the following, we
study the symmetry breaking using isospin symmetry and
begin with the ∆S = 0 transitions.

For the Σ− → Σ0 transition, we have

ρΣ−Σ0

f =
2MΣ

2m

1
2

(∆u − ∆s) − 1. (33)

Using the expressions for µ(Σ−) and µ(Σ+), we find in
this case

∆u − ∆s =
1

3µd

(
µ(Σ−) − µ(Σ+)

)
, (34)

which leads to

ρΣ−Σ0

f = MΣ

(
µ(Σ+) − µ(Σ−)

) − 1

=
MΣ

2MN
(κΣ+ − κΣ−). (35)

In a similar way, we obtain for the Ξ− → Ξ0 transition

ρΞ−Ξ0

f = 2MΞ

(
µ(Ξ0) − µ(Ξ−)

) − 1

=
MΞ

MN
(κΞ0 − κΞ−). (36)
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Direct computation in the χQM using the formula (20)
with the parameters ∆q, where q = u, d, s, gives ρΞ−Ξ0

f ≈
−2.27, whereas the formula (36) above gives ρΞ−Ξ0

f ≈
−1.84 when the experimental magnetic moments are in-
serted. The discrepancy is due to the relatively poor agree-
ment between the χQM prediction of the magnetic mo-
ments of the Ξ0 and Ξ− and their experimental values.

For f1 = 0, we calculate instead f2 = ΣgQM
1 /σ. This

replaces ρf for Σ± → Λ. The result can be expressed
in terms of the ΣΛ magnetic moment transition matrix
element:

µ(ΣΛ) = − 1
2
√

3
(∆u − 2∆d + ∆s) (µu − µd). (37)

We then obtain

fΣ+Λ
2 = −

√
2(MΛ + MΣ)µ(ΣΛ). (38)

In all the cases above, there is an inherent ambiguity
in the choice of magnetic moments, since in the SU(6)
QM the form factors GA can be expressed in only two
polarization differences, say ∆u − ∆d and ∆u − ∆s. In
our approximation, the different choices are related by the
sum-rule

µ(p) − µ(n) + µ(Σ−) − µ(Σ+) + µ(Ξ0) − µ(Ξ−) = 0,
(39)

which follows under quite general assumptions on the spin
polarizations and the magnetic moments of the quarks,
and in particular from the SU(6) QM. This sum-rule is
valid to within about 0.5 µN on the left hand side.

In these cases, σ = 2m and the quark magnetic mo-
ments µu = −2µd = 1/(3m) are related to 1/σ without
any symmetry breaking. When we pass to anomalous mag-
netic moments in (32), (35), and (36) it is no longer pos-
sible to use (39), since extra linear terms in E will then
appear.

3.3 The ∆S = 1 cases

The cases with ∆S = 1 are less straightforward, and there
is no “natural” way to express the spin polarizations in
terms of the magnetic moments, since many different pos-
sibilities give the same formal result. To begin with, there
is a complication that σ = m+ms in these cases. The cru-
cial factor in the transformation of (20) into an expression
in terms of magnetic moments is, up to normalization,
given by an expression of the form

A ' 1
σ(µd + xµs)

, (40)

where x is a real parameter. This expression must not
contain terms linear in the small quantity ε = δ/σ. It is
easy to see that the condition for this is given by x = 1.

Let us study this for the case of the Σ− → n transition.
We have

ρΣ−n
f =

MΣ + MN

m + ms

µ(Σ−) − µ(n)
µs + 2µd

− 1. (41)

This can be rewritten as

ρΣ−n
f = (MΣ + MN )A1(µ(n) − µ(Σ−)) − 1, (42)

where A1 = −1/((m + ms)(µs + 2µd)). It is easy to check
that this expression is linear in ε, since x = 1/2. In fact,
using ms = 3m/2, we get A1 = 9/10, so the deviation
from 1 is 10%.

An alternative way of obtaining the spin polarization
for the Σ− → n transition is to use

µΣn ≡ µ(n) + 1
2µ(p) − µ(Σ−) − 1

2µ(Σ+)

= −3
2
(∆d − ∆s)(µd + µs). (43)

This gives

ρΣ−n
f = (MΣ + MN )A2µΣn − 1, (44)

where

A2 = − 2
3(m + ms)(µs + µd)

' 1 + O(ε2).

In fact, for ms = 3m/2, we obtain A2 = 24/25, which is
only 4% from 1. In the following, this term will therefore
be put equal to 1. We can then write

ρΣ−n
f =

MΣ + MN

2MN
κΣn, (45)

where κΣn ≡ κn + 1
2κp − κΣ− − 1

2κΣ+ . Next consider

ρΞ−Σ0

f =
MΞ + MΣ

m + ms
(∆u − ∆d) − 1

= (µ(p) − µ(n))
1

µN
− 1 = κp − κn, (46)

where we have used MΞ +MΣ ' 3(m+ms). This expres-
sion happens to coincide exactly with CVC (see (28)).

However, to neglect the hyperfine interaction in the
mass formulas for the baryons means to discard terms lin-
ear in the hyperfine interaction constant, which is gener-
ally of the order 50 MeV. This is almost of the same order
as the symmetry breaking mass difference δ between the
quark masses. We should therefore not be satisfied with
this approximation.

Again, it is possible to use another combination to ex-
press the axial-vector coupling constant. This is given by

µΞΣ ≡ µ(Σ+) + 1
2µ(Σ−) − µ(Ξ0) − 1

2µ(Ξ−)

= −3
2
(∆u − ∆d)(µd + µs). (47)

Using this gives

ρΞ−Σ0

f = (MΞ + MΣ)µΞΣ − 1. (48)

For later use this can be rewritten as

ρΞ−Σ0

f =
MΞ + MΣ

2MN

(
κΣ+ + 1

2κΣ− − κΞ0 − 1
2κΞ−

)
.

(49)
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Since all GA’s can be expressed in terms of the spin
polarization differences ∆d−∆s and ∆u−∆d it is possible
to express all other ∆S = 1 transitions in terms of µΣn

and µΞΣ . However, if we want to convert the result from
magnetic moments to anomalous magnetic moments, we
must also avoid terms that are linear in the mass ratios
E = ∆/Σ.

Consider therefore next

ρΞ−Λ
f =

1
3

MΞ + MΛ

m + ms
(∆u + ∆d − 2∆s) − 1. (50)

To avoid terms that are linear in E, we must in this case
use

µΞΛ ≡ µ(p) + 3µ(Λ) − µ(Ξ0) − 1
2µ(Σ+) − 5

2µ(Ξ−)

= −3
2

(∆u + ∆d − 2∆s) (µd + µs). (51)

We then obtain, in the same approximation,

ρΞ−Λ
f = (MΞ + MΣ)

1
3
µΞΛ − 1 =

MΞ + MΣ

2MN

1
3
κΞΛ + A3,

(52)

where κΞΛ ≡ κp + 3κΛ − κΞ0 − 1
2κΣ+ − 5

2κΞ− and A3 =
1
3 (MΣ + MΞ)(1/(2MN ) − 1/(4MΣ) + 5/(4MΞ)) − 1. It
is easy to verify that A3 = O(E2) and may therefore be
neglected.

Finally, we can express ρΛp
f in terms of magnetic mo-

ments in the same way starting from

ρΛp
f =

1
3

MΛ + MN

m + ms
(2∆u − ∆d − ∆s) − 1. (53)

The best way of expressing the form factor uses

µΛp ≡ µ(n) + 5
2µ(p) + 1

2µ(Σ−) − 3µ(Λ) − µ(Ξ−)

= −3
2
(2∆u − ∆d − ∆s)(µd + µs). (54)

Omitting second order mass differences, this gives

ρΛp
f = (MΛ + MN )

1
3
µΛp − 1 =

MΛ + MN

2MN

1
3
κΛp, (55)

where κΛp ≡ κn + 5
2κp + 1

2κΣ− − 3κΛ − κΞ− .

3.4 The weak magnetism in the chiral quark soliton
model

The weak magnetic form factors have also been calculated
in the χQSM. The result, after normalization in our con-

vention, is given in [7] as

ρnp
f = κp − κn, (56)

ρΣ−Σ0

f =
MΣ

2MN
(κΣ+ − κΣ−) , (57)

fΣ±Λ
2 = −

√
2
MΣ + MΛ

2MN

µΣΛ

µN
, (58)

ρΣ−n
f =

MΣ + MN

2MN

× (
κn + 1

2κp − κΣ− − 1
2κΣ+

)
, (59)

ρΞ−Σ0

f =
MΞ + MΣ

2MN

× (
κΣ+ + 1

2κΣ− − κΞ0 − 1
2κΞ−

)
, (60)

ρΞ−Λ
f =

MΞ + MΛ

2MN

1
3

× (
κp + 3κΛ − κΞ0 − 1

2κΣ+ − 5
2κΞ−

)
, (61)

ρΛp
f =

MΛ + MN

2MN

1
3

× (
κn + 5

2κp + 1
2κΣ− − 3κΛ − κΞ−

)
. (62)

We have here neglected the possible change in the tran-
sition from the anomalous magnetic moments to the full
magnetic moments that might be related to the change in
normalization. By this, we mean that in the above expres-
sions, κB = µB/µN −QBMN/MB , and the normalization,
of course, is of relevance when the symmetry is broken.

However, our understanding is that, apart from a fac-
tor of MB/(MB + MB′), these differences in our normal-
ization are of the order O(m2

s) or O(ms/Nc), i.e. in terms
that are anyhow neglected in the above formulas [7], and
the corresponding terms of second order or higher in the
mass ratios that are neglected in our calculations.

From Sect. 3 it should be clear then, that the method
of expressing ρf , that avoids introducing linear terms in
the symmetry breaking masses, in general produces ex-
pressions that coincide with those above. This shows that
the χQM and the χQSM give the same results when linear
terms in the symmetry breaking are eliminated.

4 Discussion

The particular choice of combinations of magnetic mo-
ments, that enables one to express the ρf ’s in term of
anomalous magnetic moments, are enforced from the can-
cellation of linear terms in both the quark and baryonic
mass differences. The analysis presented here shows that
when this is done the χQM and the χQSM give the same
results. The earlier noticed numerical differences are re-
lated to the difficulty to reproduce the octet baryon mag-
netic moments in the χQM without symmetry breaking
in the spin polarizations. This can be seen e.g. in the case
of Ξ0 and Ξ−.

It is of course possible to stop and be satisfied at the
level where the ρf ’s are expressed in terms of magnetic
moments. Then, since all GA’s can be expressed in terms
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of only two spin polarization differences, there are several
equivalent relations for the ρf ’s related to sum rules for
the GA’s. On top of that, there is in this case also the
possibility to use the sum-rules for the magnetic moments
to find alternative ways to express the ρf ’s.

For the ρf ’s the existing experimental data is given in
Table 2.

Let us consider this table.
The CVC values listed are in a way half experimental

results, since they use the measured values of the anoma-
lous magnetic moments for the nucleons as input data to
calculate these values.

Since the magnetic moments of the quarks are fitted
to the magnetic moments of the proton and neutron, the
SU(6) QM results should coincide with CVC in the ab-
sence of symmetry breaking and are not listed.

All values obtained for the ρf ’s in the χQM lie within
the experimental errors, where experimental data exist.
(The experimental results have large errors, though.)

In one case, that of neutron decay, we can see that
ρf (χQM) ≈ ρf (CVC). For the other decays, the ρf ’s
of the χQM incorporate effects of vector current non-
conservation due to the mass differences between the iso-
multiplets as well as depolarization of the spin due to GB
emission.

All calculated values for the χQM have the same sign
as the CVC values and they are also close in magnitude.
The numerical results cannot be expected to be much bet-
ter than within 10%. Already isospin is violated to a few
percent.

For comparison, we have in two cases calculated the
ρf ’s obtained by neglecting the hyperfine interaction, since
it is rather small. The results are

ρΞ−Σ0

f = (µ(p) − µ(n))/µN − 1 ' 3.71

and

ρΞ−Λ
f = (µ(Σ+) + µ(Ξ0) − µ(Ξ−) − µ(Σ−))/(3µN ) − 1

= 0.01 ± 0.02,

which both are very close to the values using (49) and
(52), respectively.

5 Summary and conclusions

We have studied the baryonic weak magnetism form fac-
tors in detail in the spirit of the χQM and compared the
results with the χQSM. The comparison shows that the
results are in good agreement, and that the differences
are of the order of reliability of the results in all cases.
This might indicate that the main part of the symmetry
breaking is accounted for in these formulas. The numerical
results are presented in Tables 1 and 2.

The present investigation has used the SU(3) symmet-
ric coupling in the χQM and the static approximation for
the quarks. A natural improvement would be to incor-
porate lowest order non-static effects and further SU(3)
symmetry breaking effects [15,16], to obtain better agree-
ment with experimental data. In particular, we expect
that this would lead to a closer agreement with the ρf

ratios obtained from direct application of (20), since sym-
metry breaking can better account for the octet baryon
magnetic moments [12]. SU(3) symmetry breaking also
leads to better agreement for gnp

A [12,15,16].
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